Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562877

RESUMO

HIV-1 integration into the human genome is dependent on 3'-processing of the reverse transcribed viral DNA. Recently, we reported that the cellular Three Prime Repair Exonuclease 1 (TREX1) enhances HIV-1 integration by degrading the unprocessed viral DNA, while the integration-competent 3'-processed DNA remained resistant. Here, we describe the mechanism by which the 3'-processed HIV-1 DNA resists TREX1-mediated degradation. Our kinetic studies revealed that the rate of cleavage (kcat) of the 3'-processed DNA was significantly lower than the unprocessed HIV-1 DNA by TREX1. The efficiency of degradation (kcat/KM) of the 3'-processed DNA was also significantly lower than the unprocessed DNA. Furthermore, the binding affinity (Kd) of TREX1 was markedly lower to the 3'-processed DNA compared to the unprocessed DNA. Molecular docking and dynamics studies revealed distinct conformational binding modes of TREX1 with the 3'-processed and unprocessed HIV-1 DNA. Particularly, the unprocessed DNA was favorably positioned in the active site with polar interactions with the catalytic residues of TREX1. Additionally, a stable complex was formed between TREX1 and the unprocessed DNA compared the 3'-processed DNA. These results pinpoint the biochemical mechanism by which TREX1 preferentially degrades the integration-incompetent HIV-1 DNA and reveal the unique structural and conformational properties of the integration-competent 3'-processed HIV-1 DNA.

2.
ACS Sens ; 9(3): 1602-1610, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38451864

RESUMO

Solid-state (SS-) nanopore sensing has gained tremendous attention in recent years, but it has been constrained by its intrinsic lack of selectivity. To address this, we previously established a novel SS-nanopore assay that produces translocation signals only when a target biotinylated nucleic acid fragment binds to monovalent streptavidin (MS), a protein variant with a single high-affinity biotin-binding domain. While this approach has enabled selective quantification of diverse nucleic acid biomarkers, sensitivity enhancements are needed to improve the detection of low-abundance translational targets. Because the translocation dynamics that determine assay efficacy are largely governed by constituent charge characteristics, we here incorporate a polyhistidine-tagged MS (hMS) to alter the component detectability. We investigate the effects of buffer pH, salt concentration, and SS-nanopore diameter on the performance with the alternate reagent, achieve significant improvements in measurement sensitivity and selectivity, and expand the range of device dimensions viable for the assay. We used this improvement to detect as little as 1 nM miRNA spiked into human plasma. Overall, our findings improve the potential for broader applications of SS-nanopores in the quantitative analyses of molecular biomarkers.


Assuntos
Histidina , Nanoporos , Ácidos Nucleicos , Humanos , Estreptavidina/química , Biomarcadores
3.
Nucleic Acids Res ; 51(13): 7014-7024, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37246644

RESUMO

SAMHD1 dNTP hydrolase activity places it at the crossroad of several important biological pathways, such as viral restriction, cell cycle regulation, and innate immunity. Recently, a dNTPase independent function for SAMHD1 in homologous recombination (HR) of DNA double-strand breaks has been identified. SAMHD1 function and activity is regulated by several post-translational modifications, including protein oxidation. Here, we showed that oxidation of SAMHD1 increases ssDNA binding affinity and occurs in a cell cycle-dependent manner during S phase consistent with a role in HR. We determined the structure of oxidized SAMHD1 in complex with ssDNA. The enzyme binds ssDNA at the regulatory sites at the dimer interface. We propose a mechanism that oxidation of SAMHD1 acts as a functional switch to toggle between dNTPase activity and DNA binding.


Assuntos
Modelos Moleculares , Proteína 1 com Domínio SAM e Domínio HD , Oxirredução , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Ligação Proteica , DNA de Cadeia Simples/metabolismo , Estrutura Terciária de Proteína , Células PC-3 , Humanos
4.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077791

RESUMO

The goal of this study is to identify pharmacological inhibitors that target a recently identified novel mediator of breast cancer brain metastasis (BCBM), truncated glioma-associated oncogene homolog 1 (tGLI1). Inhibitors of tGLI1 are not yet available. To identify compounds that selectively kill tGLI1-expressing breast cancer, we screened 1527 compounds using two sets of isogenic breast cancer and brain-tropic breast cancer cell lines engineered to stably express the control, GLI1, or tGLI1 vector, and identified the FDA-approved antifungal ketoconazole (KCZ) to selectively target tGLI1-positive breast cancer cells and breast cancer stem cells, but not tGLI1-negative breast cancer and normal cells. KCZ's effects are dependent on tGLI1. Two experimental mouse metastasis studies have demonstrated that systemic KCZ administration prevented the preferential brain metastasis of tGLI1-positive breast cancer and suppressed the progression of established tGLI1-positive BCBM without liver toxicities. We further developed six KCZ derivatives, two of which (KCZ-5 and KCZ-7) retained tGLI1-selectivity in vitro. KCZ-7 exhibited higher blood-brain barrier penetration than KCZ/KCZ-5 and more effectively reduced the BCBM frequency. In contrast, itraconazole, another FDA-approved antifungal, failed to suppress BCBM. The mechanistic studies suggest that KCZ and KCZ-7 inhibit tGLI1's ability to bind to DNA, activate its target stemness genes Nanog and OCT4, and promote tumor proliferation and angiogenesis. Our study establishes the rationale for using KCZ and KCZ-7 for treating and preventing BCBM and identifies their mechanism of action.

5.
Nat Commun ; 13(1): 4105, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835745

RESUMO

Regulation of bacteriophage gene expression involves repressor proteins that bind and downregulate early lytic promoters. A large group of mycobacteriophages code for repressors that are unusual in also terminating transcription elongation at numerous binding sites (stoperators) distributed across the phage genome. Here we provide the X-ray crystal structure of a mycobacteriophage immunity repressor bound to DNA, which reveals the binding of a monomer to an asymmetric DNA sequence using two independent DNA binding domains. The structure is supported by small-angle X-ray scattering, DNA binding, molecular dynamics, and in vivo immunity assays. We propose a model for how dual DNA binding domains facilitate regulation of both transcription initiation and elongation, while enabling evolution of other superinfection immune specificities.


Assuntos
Bacteriófagos , Micobacteriófagos , Bacteriófagos/genética , Sequência de Bases , DNA/metabolismo , Micobacteriófagos/genética , Micobacteriófagos/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Virais/metabolismo
7.
Nat Commun ; 12(1): 6091, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667203

RESUMO

Physiological changes in GTP levels in live cells have never been considered a regulatory step of RAC1 activation because intracellular GTP concentration (determined by chromatography or mass spectrometry) was shown to be substantially higher than the in vitro RAC1 GTP dissociation constant (RAC1-GTP Kd). Here, by combining genetically encoded GTP biosensors and a RAC1 activity biosensor, we demonstrated that GTP levels fluctuating around RAC1-GTP Kd correlated with changes in RAC1 activity in live cells. Furthermore, RAC1 co-localized in protrusions of invading cells with several guanylate metabolism enzymes, including rate-limiting inosine monophosphate dehydrogenase 2 (IMPDH2), which was partially due to direct RAC1-IMPDH2 interaction. Substitution of endogenous IMPDH2 with IMPDH2 mutants incapable of binding RAC1 did not affect total intracellular GTP levels but suppressed RAC1 activity. Targeting IMPDH2 away from the plasma membrane did not alter total intracellular GTP pools but decreased GTP levels in cell protrusions, RAC1 activity, and cell invasion. These data provide a mechanism of regulation of RAC1 activity by local GTP pools in live cells.


Assuntos
Guanosina Trifosfato/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Guanosina Trifosfato/química , Células HEK293 , Humanos , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Cinética , Ligação Proteica , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/genética
8.
Front Mol Biosci ; 8: 724870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513928

RESUMO

SAMHD1 activity is regulated by a network of mechanisms including phosphorylation, oxidation, oligomerization, and others. Significant questions remain about the effects of phosphorylation on SAMHD1 function and activity. We investigated the effects of a SAMHD1 T592E phosphorylation mimic on its cellular localization, catalytic activity, and cell cycle progression. We found that the SAMHD1 T592E is a catalytically active enzyme that is inhibited by protein oxidation. SAMHD1 T592E is retained in the nucleus at higher levels than the wild-type protein during growth factor-mediated signaling. This nuclear localization protects SAMHD1 from oxidation by cytoplasmic reactive oxygen species. The SAMHD1 T592E phosphomimetic further inhibits the cell cycle S/G2 transition. This has significant implications for SAMHD1 function in regulating innate immunity, antiviral response and DNA replication.

9.
J Virol ; 95(17): e0055521, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34105995

RESUMO

Three prime repair exonuclease 1 (TREX1) is the most abundant 3'→5' exonuclease in mammalian cells. It has been suggested that TREX1 degrades HIV-1 DNA to enable the virus to evade the innate immune system. However, the exact role of TREX1 during early steps of HIV-1 infection is not clearly understood. In this study, we report that HIV-1 infection is associated with upregulation, perinuclear accumulation, and nuclear localization of TREX1. However, TREX1 overexpression did not affect reverse transcription or nuclear entry of the virus. Surprisingly, HIV-1 DNA integration was increased in TREX1-overexpressing cells, suggesting a role of the exonuclease in the post-nuclear entry step of infection. Accordingly, preintegration complexes (PICs) extracted from TREX1-overexpressing cells retained higher levels of DNA integration activity. TREX1 depletion resulted in reduced levels of proviral integration, and PICs formed in TREX1-depleted cells retained lower DNA integration activity. Addition of purified TREX1 to PICs also enhanced DNA integration activity, suggesting that TREX1 promotes HIV-1 integration by stimulating PIC activity. To understand the mechanism, we measured TREX1 exonuclease activity on substrates containing viral DNA ends. These studies revealed that TREX1 preferentially degrades the unprocessed viral DNA, but the integration-competent 3'-processed viral DNA remains resistant to degradation. Finally, we observed that TREX1 addition stimulates the activity of HIV-1 intasomes assembled with the unprocessed viral DNA but not that of intasomes containing the 3'-processed viral DNA. These biochemical analyses provide a mechanism by which TREX1 directly promotes HIV-1 integration. Collectively, our study demonstrates that HIV-1 infection upregulates TREX1 to facilitate viral DNA integration. IMPORTANCE Productive HIV-1 infection is dependent on a number of cellular factors. Therefore, a clear understanding of how the virus exploits the cellular machinery will identify new targets for inhibiting HIV-1 infection. The three prime repair exonuclease 1 (TREX1) is the most active cellular exonuclease in mammalian cells. It has been reported that TREX1 prevents accumulation of HIV-1 DNA and enables the virus to evade the host innate immune response. Here, we show that HIV-1 infection results in the upregulation, perinuclear accumulation, and nuclear localization of TREX1. We also provide evidence that TREX1 promotes HIV-1 integration by preferentially degrading viral DNAs that are incompatible with chromosomal insertion. These observations identify a novel role of TREX1 in a post-nuclear entry step of HIV-1 infection.


Assuntos
DNA Viral/metabolismo , Exodesoxirribonucleases/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Imunidade Inata/imunologia , Fosfoproteínas/metabolismo , Integração Viral , Replicação Viral , Núcleo Celular , DNA Viral/genética , Exodesoxirribonucleases/genética , Células HEK293 , Infecções por HIV/genética , Células HeLa , Humanos , Fosfoproteínas/genética
10.
Front Immunol ; 12: 660184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868310

RESUMO

Mutations in the TREX1 3' → 5' exonuclease are associated with a spectrum of autoimmune disease phenotypes in humans and mice. Failure to degrade DNA activates the cGAS-STING DNA-sensing pathway signaling a type-I interferon (IFN) response that ultimately drives immune system activation. TREX1 and the cGAS-STING DNA-sensing pathway have also been implicated in the tumor microenvironment, where TREX1 is proposed to degrade tumor-derived DNA that would otherwise activate cGAS-STING. If tumor-derived DNA were not degraded, the cGAS-STING pathway would be activated to promote IFN-dependent antitumor immunity. Thus, we hypothesize TREX1 exonuclease inhibition as a novel immunotherapeutic strategy. We present data demonstrating antitumor immunity in the TREX1 D18N mouse model and discuss theory surrounding the best strategy for TREX1 inhibition. Potential complications of TREX1 inhibition as a therapeutic strategy are also discussed.


Assuntos
Doenças Autoimunes/imunologia , DNA/imunologia , Exodesoxirribonucleases/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , Fosfoproteínas/imunologia , Animais , Antineoplásicos/imunologia , Antineoplásicos/uso terapêutico , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Células Cultivadas , DNA/genética , DNA/metabolismo , Modelos Animais de Doenças , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Humanos , Imunoterapia/métodos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia
11.
PLoS One ; 14(11): e0223387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697703

RESUMO

Bordetella bacteria are respiratory pathogens of humans, birds, and livestock. Bordetella pertussis the causative agent of whopping cough remains a significant health issue. The transcriptional regulator, BpsR, represses a number of Bordetella genes relating to virulence, cell adhesion, cell motility, and nicotinic acid metabolism. DNA binding of BpsR is allosterically regulated by interaction with 6-hydroxynicotinic acid (6HNA), the first product in the nicotinic acid degradation pathway. To understand the mechanism of this regulation, we have determined the crystal structures of BpsR and BpsR in complex with 6HNA. The structures reveal that BpsR binding of 6HNA induces a conformational change in the protein to prevent DNA binding. We have also identified homologs of BpsR in other Gram negative bacteria in which the amino acids involved in recognition of 6HNA are conserved, suggesting a similar mechanism for regulating nicotinic acid degradation.


Assuntos
Biofilmes/crescimento & desenvolvimento , DNA/metabolismo , Ácidos Nicotínicos/metabolismo , Fatores de Transcrição/genética , Aminoácidos/metabolismo , Proteínas de Bactérias , Bordetella pertussis/metabolismo , Niacina/metabolismo , Fatores de Transcrição/metabolismo , Virulência/fisiologia
12.
Biochemistry ; 57(47): 6624-6636, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30380297

RESUMO

The dNTP triphosphohydrolase SAMHD1 is a regulator of cellular dNTP pools. Given its central role in nucleotide metabolism, SAMHD1 performs important functions in cellular homeostasis, cell cycle regulation, and innate immunity. It therefore represents a high-profile target for small molecule drug design. SAMHD1 has a complex mechanism of catalytic activation that makes the design of an activating compound challenging. However, an inhibitor of SAMHD1 could serve multiple therapeutic roles, including the potentiation of antiviral and anticancer drug regimens. The lack of high-throughput screens that directly measure SAMHD1 catalytic activity has impeded efforts to identify inhibitors of SAMHD1. Here we describe a novel high-throughput screen that directly measures SAMHD1 catalytic activity. This assay results in a colorimetric end point that can be read spectrophotometrically and utilizes bis(4-nitrophenyl) phosphate as the substrate and Mn2+ as the activating cation that facilitates catalysis. When used to screen a library of Food and Drug Administration-approved drugs, this HTS identified multiple novel compounds that inhibited SAMHD1 dNTPase activity at micromolar concentrations.


Assuntos
Inibidores Enzimáticos/farmacologia , Nitrofenóis/farmacologia , Proteína 1 com Domínio SAM e Domínio HD/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Manganês/farmacologia , Multimerização Proteica
13.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29581411

RESUMO

Many of the pathogenic species of the genus Bordetella have an absolute requirement for nicotinic acid (NA) for laboratory growth. These Gram-negative bacteria also harbor a gene cluster homologous to the nic cluster of Pseudomonas putida which is involved in the aerobic degradation of NA and its transcriptional control. We report here that BpsR, a negative regulator of biofilm formation and Bps polysaccharide production, controls the growth of Bordetella bronchiseptica by repressing the expression of nic genes. The severe growth defect of the ΔbpsR strain in Stainer-Scholte medium was restored by supplementation with NA, which also functioned as an inducer of nic genes at low micromolar concentrations that are usually present in animals and humans. Purified BpsR protein bound to the nic promoter region, and its DNA binding activity was inhibited by 6-hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradative pathway. Reporter assays with the isogenic mutant derivative of the wild-type (WT) strain harboring deletion in nicA, which encodes a putative nicotinic acid hydroxylase responsible for conversion of NA to 6-HNA, showed that 6-HNA is the actual inducer of the nic genes in the bacterial cell. Gene expression profiling further showed that BpsR dually activated and repressed the expression of genes associated with pathogenesis, transcriptional regulation, metabolism, and other cellular processes. We discuss the implications of these findings with respect to the selection of pyridines such as NA and quinolinic acid for optimum bacterial growth depending on the ecological niche.IMPORTANCE BpsR, the previously described regulator of biofilm formation and Bps polysaccharide production, controls Bordetella bronchiseptica growth by regulating the expression of genes involved in the degradation of nicotinic acid (NA). 6-Hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradation pathway prevented BpsR from binding to DNA and was the actual in vivo inducer. We hypothesize that BpsR enables Bordetella bacteria to efficiently and selectively utilize NA for their survival depending on the environment in which they reside. The results reported herein lay the foundation for future investigations of how BpsR and the alteration of its activity by NA orchestrate the control of Bordetella growth, metabolism, biofilm formation, and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella bronchiseptica/crescimento & desenvolvimento , Bordetella bronchiseptica/metabolismo , Regulação Bacteriana da Expressão Gênica , Niacina/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Bordetella bronchiseptica/genética , Deleção de Genes , Genes Reguladores , Transcrição Gênica
14.
Autoimmunity ; 51(3): 96-110, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29583030

RESUMO

Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) is a deoxynucleotide triphosphate (dNTP) hydrolase that plays an important role in the homeostatic balance of cellular dNTPs. Its emerging role as an effector of innate immunity is affirmed by mutations in the SAMHD1 gene that cause the severe autoimmune disease, Aicardi-Goutieres syndrome (AGS) and that are linked to cancer. Additionally, SAMHD1 functions as a restriction factor for retroviruses, such as HIV. Here, we review the current biochemical and biological properties of the enzyme including its structure, activity, and regulation by post-translational modifications in the context of its cellular function. We outline open questions regarding the biology of SAMHD1 whose answers will be important for understanding its function as a regulator of cell cycle progression, genomic integrity, and in autoimmunity.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Autoimunidade/genética , Ciclo Celular/genética , Imunidade Inata/genética , Neoplasias/genética , Malformações do Sistema Nervoso/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Humanos , Nucleotídeos/metabolismo
15.
Redox Biol ; 15: 380-386, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29331665

RESUMO

The paradoxical role of reactive oxygen species in cell death versus cell survival establishes a delicate balance between chemotherapy efficacy and management of detrimental side effects. Normal proliferative signaling requires that cells remain inside a redox range that allows reversible protein oxidation to occur. Shifting the redox environment toward highly reducing or oxidizing states leads to cellular stress and cell death. Reactive oxygen species produced in response to Taxol and cisplatin treatment are necessary for effective cancer cell killing but the same ROS leads to damaging side effects in normal tissues. Combining antioxidants with chemotherapeutics to alleviate the unwanted side effects produces variable and often undesirable effects on cancer treatment. Here, we describe a more targeted method to improve ovarian cancer cell killing without the need for antioxidants. In ovarian cancer cells, lysophosphatidic acid (LPA) is a prominent growth factor that contributes to tumor survival and proliferation. We find that blocking LPA-dependent signaling with a specific receptor antagonist consistently increases cell death in response to both Taxol and cisplatin. We propose that inhibiting the upregulated growth factor-dependent signaling in cancer cells will target chemo-insensitivity, potentially lowering the necessary dose of the drugs and preventing harmful side effects.


Assuntos
Antioxidantes/metabolismo , Proliferação de Células/efeitos dos fármacos , Lisofosfolipídeos/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Espécies Reativas de Oxigênio/metabolismo
16.
Nano Lett ; 17(11): 7110-7116, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28967259

RESUMO

Many regulated epigenetic elements and base lesions found in genomic DNA can both directly impact gene expression and play a role in disease processes. However, due to their noncanonical nature, they are challenging to assess with conventional technologies. Here, we present a new approach for the targeted detection of diverse modified bases in DNA. We first use enzymatic components of the DNA base excision repair pathway to install an individual affinity label at each location of a selected modified base with high yield. We then probe the resulting material with a solid-state nanopore assay capable of discriminating labeled DNA from unlabeled DNA. The technique features exceptional modularity via selection of targeting enzymes, which we establish through the detection of four DNA base elements: uracil, 8-oxoguanine, T:G mismatch, and the methyladenine analog 1,N6-ethenoadenine. Our results demonstrate the potential for a quantitative nanopore assessment of a broad range of base modifications.


Assuntos
Técnicas Biossensoriais/métodos , Dano ao DNA , DNA/análise , Nanoporos , Neoplasias/genética , Adenina/análogos & derivados , Pareamento Incorreto de Bases , DNA/genética , Reparo do DNA , Epigênese Genética , Guanina/análogos & derivados , Guanina/análise , Humanos , Modelos Moleculares , Nanoporos/ultraestrutura , Nanotecnologia/métodos , Uracila/análise
17.
Antioxid Redox Signal ; 27(16): 1317-1331, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398823

RESUMO

AIMS: Proliferative signaling involves reversible posttranslational oxidation of proteins. However, relatively few molecular targets of these modifications have been identified. We investigate the role of protein oxidation in regulation of SAMHD1 catalysis. RESULTS: Here we report that SAMHD1 is a major target for redox regulation of nucleotide metabolism and cell cycle control. SAMHD1 is a triphosphate hydrolase, whose function involves regulation of deoxynucleotide triphosphate pools. We demonstrate that the redox state of SAMHD1 regulates its catalytic activity. We have identified three cysteine residues that constitute an intrachain disulfide bond "redox switch" that reversibly inhibits protein tetramerization and catalysis. We show that proliferative signals lead to SAMHD1 oxidation in cells and oxidized SAMHD1 is localized outside of the nucleus. Innovation and Conclusions: SAMHD1 catalytic activity is reversibly regulated by protein oxidation. These data identify a previously unknown mechanism for regulation of nucleotide metabolism by SAMHD1. Antioxid. Redox Signal. 27, 1317-1331.


Assuntos
Cisteína/química , Oxirredução , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Domínio Catalítico , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Dicroísmo Circular , Difusão Dinâmica da Luz , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Nucleotídeos/metabolismo , Multimerização Proteica
18.
Proc Natl Acad Sci U S A ; 112(16): 5117-22, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848017

RESUMO

The TREX1 gene encodes a potent DNA exonuclease, and mutations in TREX1 cause a spectrum of lupus-like autoimmune diseases. Most lupus patients develop autoantibodies to double-stranded DNA (dsDNA), but the source of DNA antigen is unknown. The TREX1 D18N mutation causes a monogenic, cutaneous form of lupus called familial chilblain lupus, and the TREX1 D18N enzyme exhibits dysfunctional dsDNA-degrading activity, providing a link between dsDNA degradation and nucleic acid-mediated autoimmune disease. We determined the structure of the TREX1 D18N protein in complex with dsDNA, revealing how this exonuclease uses a novel DNA-unwinding mechanism to separate the polynucleotide strands for single-stranded DNA (ssDNA) loading into the active site. The TREX1 D18N dsDNA interactions coupled with catalytic deficiency explain how this mutant nuclease prevents dsDNA degradation. We tested the effects of TREX1 D18N in vivo by replacing the TREX1 WT gene in mice with the TREX1 D18N allele. The TREX1 D18N mice exhibit systemic inflammation, lymphoid hyperplasia, vasculitis, and kidney disease. The observed lupus-like inflammatory disease is associated with immune activation, production of autoantibodies to dsDNA, and deposition of immune complexes in the kidney. Thus, dysfunctional dsDNA degradation by TREX1 D18N induces disease in mice that recapitulates many characteristics of human lupus. Failure to clear DNA has long been linked to lupus in humans, and these data point to dsDNA as a key substrate for TREX1 and a major antigen source in mice with dysfunctional TREX1 enzyme.


Assuntos
Pérnio/enzimologia , Pérnio/genética , Dano ao DNA , DNA/metabolismo , Exodesoxirribonucleases/genética , Inflamação/patologia , Lúpus Eritematoso Cutâneo/enzimologia , Lúpus Eritematoso Cutâneo/genética , Fosfoproteínas/genética , Alelos , Animais , Anticorpos/imunologia , Autoimunidade/imunologia , Sequência de Bases , Pérnio/patologia , DNA/química , DNA/genética , Exodesoxirribonucleases/química , Humanos , Lúpus Eritematoso Cutâneo/patologia , Camundongos , Dados de Sequência Molecular , Mutação/genética , Conformação de Ácido Nucleico , Fenótipo , Fosfoproteínas/química , Biossíntese de Proteínas
19.
Cell Cycle ; 14(4): 668-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25664393

RESUMO

RNA-DNA hybrids play essential roles in a variety of biological processes, including DNA replication, transcription, and viral integration. Ribonucleotides incorporated within DNA are hydrolyzed by RNase H enzymes in a removal process that is necessary for maintaining genomic stability. In order to understand the structural determinants involved in recognition of a hybrid substrate by RNase H we have determined the crystal structure of a dodecameric non-polypurine/polypyrimidine tract RNA-DNA duplex. A comparison to the same sequence bound to RNase H, reveals structural changes to the duplex that include widening of the major groove to 12.5 Å from 4.2 Å and decreasing the degree of bending along the axis which may play a crucial role in the ribonucleotide recognition and cleavage mechanism within RNase H. This structure allows a direct comparison to be made about the conformational changes induced in RNA-DNA hybrids upon binding to RNase H and may provide insight into how dysfunction in the endonuclease causes disease.


Assuntos
DNA/química , Modelos Moleculares , RNA/química , Ribonuclease H/metabolismo , Ribonucleotídeos/metabolismo , Cristalografia por Raios X , DNA/metabolismo , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , RNA/metabolismo
20.
Protein Sci ; 23(8): 1013-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24810540

RESUMO

High-molecular-weight kininogen domain 5 (HK5) is an angiogenic modulator that is capable of inhibiting endothelial cell proliferation, migration, adhesion, and tube formation. Ferritin can bind to a histidine-glycine-lysine-rich region within HK5 and block its antiangiogenic effects. However, the molecular intricacies of this interaction are not well understood. Analysis of the structure of HK5 using circular dichroism and nuclear magnetic resonance [(1) H, (15) N]-heteronuclear single quantum coherence determined that HK5 is an intrinsically unstructured protein, consistent with secondary structure predictions. Equilibrium binding studies using fluorescence anisotropy were used to study the interaction between ferritin and HK5. The interaction between the two proteins is mediated by metal ions such as Co(2+) , Cd(2+) , and Fe(2+) . This metal-mediated interaction works independently of the loaded ferrihydrite core of ferritin and is demonstrated to be a surface interaction. Ferritin H and L bind to HK5 with similar affinity in the presence of metals. The ferritin interaction with HK5 is the first biological function shown to occur on the surface of ferritin using its surface-bound metals.


Assuntos
Ferritinas/química , Proteínas Intrinsicamente Desordenadas/química , Cininogênio de Alto Peso Molecular/química , Metais Pesados/química , Ferritinas/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/isolamento & purificação , Proteínas Intrinsicamente Desordenadas/metabolismo , Cininogênio de Alto Peso Molecular/isolamento & purificação , Cininogênio de Alto Peso Molecular/metabolismo , Metais Pesados/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...